martes, 7 de mayo de 2013

DIAGRAMA DE BARRAS

Diagrama De Barras

Un diagrama de barras, también conocido como diagrama de columnas, es una forma de representar gráficamente un conjunto de datos o valores y está conformado por barras rectangulares de longitudes proporcionales a los valores representados. Los gráficos de barras son usados para comparar dos o más valores. Las barras pueden orientarse vertical u horizontalmente.

 Ejemplo
Este diagrama de ejemplo está basado en los resultados de la Elección del Parlamento Europeo en el 2004 y en el de 1999. La tabla siguiente lista el número de asientos asignadas a cada partido. Los resultados de 1999 han sido multiplicados por 1.16933, para compensar el cambio en el número de asientos entre estos años.

Un gráfico de barras que represente los resultados anteriores de la elección del 2004 se vería así:
(Si todos los datos fuesen ordenados en orden descendiente, este tipo de gráfico de barras sería llamado un 
diagrama de Pareto.)

Este gráfico de barras muestra ambos resultados (2004 y 1999):




DIAGRAMA DE PASTEL


Diagramas de Pastel  
Las gráficas circulares, también llamados gráficos de pastel o gráficas de 360 grados, son recursos estadísticos que se utilizan para representar porcentajes y proporciones. El número de elementos comparados dentro de un gráfico circular puede ser de más de 5, y los segmentos se ordenan de mayor a menor, iniciando con el más amplio a partir de las 12, como en un reloj.
Una manera fácil de identificar los segmentos es sombreando de claro a oscuro, donde el de mayor tamaño es el más claro y el de menor tamaño, el más oscuro.
Al igual que en la gráfica de barras, el empleo de tonalidades o colores facilita la diferenciación de los porcentajes o proporciones.

A diferencia de otros tipos de gráficos, el gráfico circular no tiene ejes x o y.
Se utilizan en aquellos casos donde interesa no sólo mostrar el número de veces que se da una característica o atributo de manera tabular sino más bien de manera gráfica, de tal manera que se pueda visualizar mejor la proporción en que aparece esa característica respecto del total.



POLÍGONOS DE FRECUENCIA


Polígono de Frecuencia

Polígono de frecuencia es el nombre que recibe una clase de gráfico que se crea a partir de un histograma de frecuencia. Estos histogramas emplean columnas verticales para reflejar frecuencias): el polígono de frecuencia es realizado uniendo los puntos de mayor altura de estas columnas.

Es decir, por tanto, podríamos establecer que un polígono de frecuencia es aquel que se forma a partir de la unión de los distintos puntos medios de las cimas de las columnas que configuran lo que es un histograma de frecuencia. Este se caracteriza porque utiliza siempre lo que son columnas de tipo vertical y porque nunca debe haber espacios entre lo que son unas y otras.
En las ciencias sociales, en las ciencias naturales y también en las económicas es donde con más frecuencia se hace uso de estos mencionados histogramas ya que se emplean para llevar a cabo lo que es la comparación de los resultados de un proceso determinado.
Los polígonos de frecuencia se suelen usar cuando se pretende retratar varias distribuciones distintas o la clasificación cruzada de una variable cuantitativa continua con una cualitativa o cuantitativa discreta en el mismo dibujo.
El punto de más altura de un polígono de frecuencia equivale a la mayor frecuencia, mientras que el área que se sitúa debajo de la curva incluye todos los datos que existen. Cabe recordar que la frecuencia es la repetición mayor o menor de un evento, o el número de veces que un acontecimiento periódico se reitera en una unidad temporal.

Se conoce como polígonos de frecuencia para datos agrupados a aquellos que se desarrollan mediante la marca de clase que tiene coincidencia con el punto medio de las distintas columnas del histograma. En el momento de la representación de todas las frecuencias que forman parte de una tabla de datos agrupados, se genera el histograma de frecuencias acumuladas que posibilita la diagramación del polígono correspondiente.

Un polígono de frecuencia, por ejemplo, permite reflejar las temperaturas máximas promedio de una ciudad en un determinado periodo temporal. En el eje X (horizontal), deben indicarse los meses del año (enero, febrero, marzo, abril, etc.). En el eje Y (vertical), en cambio, se registran las temperaturas más altas promedio de cada mes (28º, 26º, 22º…). El polígono de frecuencia se creará al unir, mediante un segmento, las diversas temperaturas más elevadas promedio.



HISTOGRAMA

HISTOGRAMA
Un histograma es una representación gráfica de una variable en forma de barras, donde la superficie de cada barra es proporcional a la frecuencia de los valores representados. Sirven para obtener una "primera vista" general, o panorama, de la distribución de la población, o la muestra, respecto a una característica, cuantitativa y continua, de la misma y que es de interés para el observador (como la longitud o la masa). De esta manera ofrece una visión en grupo permitiendo observar una preferencia, o tendencia, por parte de la muestra o población por ubicarse hacia una determinada región de valores dentro del espectro de valores posibles (sean infinitos o no) que pueda adquirir la característica. Así pues, podemos evidenciar comportamientos, observar el grado de homogeneidad, acuerdo o concisión entre los valores de todas las partes que componen la población o la muestra, o, en contraposición, poder observar el grado de variabilidad, y por ende, la dispersión de todos los valores que toman las partes, también es posible no evidenciar ninguna tendencia y obtener que cada miembro de la población toma por su lado y adquiere un valor de la característica aleatoriamente sin mostrar ninguna preferencia o tendencia, entre otras cosas.
En el eje vertical se representan las frecuencias, es decir, la cantidad de población o la muestra, según sea el caso, que se ubica en un determinado valor o subrango de valores de la característica conocido como intervalo de clase. En el eje horizontal se representa el espectro de valores posibles que toma la característica de interés, evidentemente, cuando éste espectro de valores es infinito o muy grande el mismo es reducido a sólo una parte que muestre la tendencia o comportamiento de la población, en otras ocasiones éste espectro es extendido para mostrar el alejamiento o ubicación de la población o la muestra analizada respecto de un valor de interés.
En general se utilizan para relacionar variables cuantitativas continuas, pero también se lo suele usar para variables cuantitativas discretas, en cuyo caso es común llamarlo diagrama de frecuencias y sus barras están separadas, esto porque en el x ya no se representa un espectro continuo de valores, sino valores cuantitativos específicos como ocurre en un diagrama de barras cuando la característica que se representa es cualitativa o categórica. Su utilidad se hace más evidente cuando se cuenta con un gran número de datos cuantitativos y que se han agrupado en intervalos de clase.
Ejemplos de su uso es cuando se representan franjas de edades o altura de la muestra, y, por comodidad, sus valores se agrupan en clases, es decir, valores continuos. En los casos en los que los datos son cualitativos (no-numéricos), como sexto grado de acuerdo o nivel de estudios, es preferible un diagrama de sectores.
Los histogramas son más frecuentes en ciencias sociales, humanas y económicas que en ciencias naturales y exactas. Y permite la comparación de los resultados de un proceso.

Tipos de histogramas
Diagramas de barras simples
Representa la frecuencia simple (absoluta o relativa) mediante la altura de la barra la cual es proporcional a la frecuencia simple de la categoría que representa.
Diagramas de barras compuestas
Se usa para representar la información de una tabla de doble entrada o sea a partir de dos variables, las cuales se representan así; la altura de la barra representa la frecuencia simple de las modalidades o categorías de la variable y esta altura es proporcional a la frecuencia simple de cada modalidad.
Diagramas de barras agrupadas
Se usa para representar la información de una tabla de doble entrada o sea a partir de dos variables, el cual es representado mediante un conjunto de barras como se clasifican respecto a las diferentes modalidades.












Construcción de un histograma

Paso 1
Determinar el rango de los datos. Rango es igual al dato mayor menos el dato menor.
Paso 2
Obtener los números de clases, existen varios criterios para determinar el número de clases (o barras) -por ejemplo la regla de Sturgess-. Sin embargo ninguno de ellos es exacto. Algunos autores recomiendan de cinco a quince clases, dependiendo de cómo estén los datos y cuántos sean. Un criterio usado frecuentemente es que el número de clases debe ser aproximadamente a la raíz cuadrada del número de datos. Por ejemplo, la raíz cuadrada de 30 (número de artículos) es mayor que cinco, por lo que se seleccionan seis clases.
Paso 3
Establecer la longitud de clase: es igual al rango dividido por el número de clases.
Paso 4
Construir los intervalos de clases: Los intervalos resultan de dividir el rango de los datos en relación al resultado del PASO 2 en intervalos iguales.
Paso 5
Graficar el histograma: En caso de que las clases sean todas de la misma amplitud, se hace un gráfico de barras, las bases de las barras son los intervalos de clases y altura son la frecuencia de las clases. Si se unen los puntos medios de la base superior de los rectángulos se obtiene el polígono de frecuencias.
El histograma de una imagen representa la frecuencia relativa de los niveles de gris de la imagen. Las técnicas de modificación del histograma de una imagen son útiles para aumentar el contraste de imágenes con histogramas muy concentrados.
Ejemplos de otros tipos de representaciones gráficas
Hay histogramas donde se agrupan los datos en clases, y se cuenta cuántas observaciones (frecuencia absoluta) hay en cada una de ellas. En algunas variables (variables cualitativas) las clases están definidas de modo natural, p.e sexo con dos clases: mujer, varón o grupo sanguíneo con cuatro: A, B, AB, O. En las variables cuantitativas, las clases hay que definirlas explícitamente (intervalos de clase).
Se representan los intervalos de clase en el eje de abscisas (eje horizontal) y las frecuencias, absolutas o relativas, en el de ordenadas (eje vertical).
A veces es más útil representar las frecuencias acumuladas.
O representar simultáneamente los histogramas de una variable en dos situaciones distintas.
Otra forma muy frecuente, de representar dos histogramas de la misma variable en dos situaciones distintas.
En las variables cuantitativas o en las cualitativas ordinales se pueden representar polígonos de frecuencia en lugar de histogramas, cuando se representa la frecuencia acumulativa, se denomina ojiva.



LAS OJIVAS

LAS OJIVAS
La ojiva es el polígono de frecuencias acumuladas, es decir, que en ella se permite ver cuántas observaciones se encuentran por encima o debajo de ciertos valores, en lugar de solo exhibir los números asignados a cada intervalo.
La ojiva apropiada para información que presente frecuencias mayores que el dato que se está comparando tendrá una pendiente negativa (hacia abajo y a la derecha) y en cambio la que se asigna a valores menores, tendrá una pendiente positiva. Una gráfica similar al polígono de frecuencias es la ojiva, pero ésta se obtiene de aplicar parcialmente la misma técnica a una distribución acumulativa y de igual manera que éstas, existen las ojivas mayores que y la ojiva menor que.
Existen dos diferencias fundamentales entre las ojivas y los polígonos de frecuencias (y por esto la aplicación de la técnica es parcial):
Un extremo de la ojiva no se toca al eje horizontal, para la ojiva "mayor que" sucede con el extremo izquierdo; para la ojiva "menor que", con el derecho.
En el eje horizontal en lugar de colocar las marcas de clase se colocan las fronteras de clase. Para el caso de la ojiva mayor que es la frontera menor; para la ojiva menor que, la mayor.
Las siguientes son ejemplos de ojivas, a la izquierda la "mayor que", a la derecha la "menor que", utilizando los datos que se usaron para ejemplificar el histograma:
La ojiva "mayor que" (izquierda) se le denomina de esta manera porque viendo el punto que está sobre la frontera de clase “4:00″ se ven las visitas que se realizaron en una hora mayor que las 4:00 horas (en cuestiones temporales se diría, sin errores de gramática: después de las 4:00). De forma análoga, en la ojiva "menor que" la frecuencia que se representa en cada frontera de clase son el número de observaciones menores que la frontera señalada (en caso de tiempos sería el número de observaciones antes de la hora que señala la frontera).